On integral PL characteristic classes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristic Classes for Pl Micro Bundles

1. The method to prove Theorem I is to compute the Serre spectral sequences associated to the fiberings, SPL—>SF—>F/PL—>BSPL —>BSF. The structures of H*(SF:ZP) and H*(BSF:ZP) were determined in [9], [l6] and [17]. The homotopy type of F / P L is the deep result of Sullivan [15]. The first step is to study the H space structure of F / P L and the inclusion map &:SF—->F/PL. The main tool in this ...

متن کامل

Exercises on characteristic classes

1. a) Compute the Stiefel-Whitney classes of the tangent bundle of RP . (Use the method from class for the tangent Chern classes of complex projectives spaces.) b) Conclude that if the tangent bundle is trivial, then n = 2 − 1 for some m. (In fact n must be 0, 1, 3, 7, but this is much harder to prove; one proof uses the Bott periodicity theorem.) c) Deduce (very easily!) a complete characteriz...

متن کامل

Characteristic Classes on Grassmann Manifolds

In this paper, we use characteristic classes of the canonical vector bundles and the Poincaré dualality to study the structure of the real homology and cohomology groups of oriented Grassmann manifold G(k, n). Show that for k = 2 or n ≤ 8, the cohomology groups H∗(G(k, n),R) are generated by the first Pontrjagin class, the Euler classes of the canonical vector bundles. In these cases, the Poinc...

متن کامل

On Uniqueness of Characteristic Classes

We give tools to compare different maps from algebraic K-theory. The results apply in particular to group morphisms from K-theory to any suitable cohomology theory or to K-theory. In particular, we obtain a characterization of the Chern character and of the Adams operations on higher K-theory.

متن کامل

A Note on Characteristic Classes

This paper studies the relationship between the sections and the Chern or Pontrjagin classes of a vector bundle by the theory of connection. Our results are natural generalizations of the Gauss-Bonnet Theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 1969

ISSN: 0040-9383

DOI: 10.1016/0040-9383(69)90029-9